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ABSTRACT 

The consequences of numerical resolution enhancement in column chromatography are examined 
with respect to the increase in the number of peaks that will become recognizable for analysis as deconvolu- 
tion removes peak fusion and artificially extends the peak capacity of the chromatographic system. Using 
computer-generated chromatograms and numerically deconvolving with the constrained iterative relaxa- 
tion method (CIRM), the results suggest that under ideal conditions deconvolution lowers the average 
resolution necessary for singlet peak discrimination to ca. 0.352. This decreased resolution limit allows the 
number of recognizable peaks, for fairly saturated synthetic chromatograms, to increase by ca. 50% when 
the ratio of the true number of components to the peak capacity equals 1.5. 

INTRODUCTION 

One of the most important advancements in separation science over the last two 
decades has been the development and application of high-resolution chromato- 
graphic methods aimed at resolving the components of complex mixtures of biological 
and environmental origin. Both capillary gas chromatography (GC) and high- 
performance liquid chromatography (HPLC) now have the performance to achieve 
high-resolution separations of complex samples that a short time ago would have 
seemed beyond the reaches of these techniques. The requirements for stringent quality 
control in biotechnology, controlled substance testing, forensic applications and 
environmental monitoring have placed even more demands on these techniques and 
consequently the use of very high-resolution columns, which are capable of generating 
over lo5 theoretical plates, is expanding rapidly. 

Although column technology will no doubt evolve in all application areas, there 
are a few applications where column technology has yet to make baseline separations 
a commonplace occurrence. In these applications, the components of the mixture often 
elute at such close retention times that individual separation and determination are 
difficult; however, in some instances the analyst can trap the peak and use another 
column of different selectivity. Alternatively, the operating conditions can be changed 
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to run the experiment under the highest possible resolution (by changing the column 
temperature and flow velocity) or to use a capillary column instead of a packed 
column. When available, a multi-channel detector such as a mass spectrometer (GC) 
or UV array detector (LC) can be used to aid in the analysis of a mixture when peaks 
are not well resolved. This scenario, of course, requires that the analyst has recognized 
that peak fusion is present and that the proper instrumentation is available for this type 
of analysis. It would be most convenient under these situations if the analyst could 
somehow increase the resolution of the column to look for other closely eluting peaks. 
This desire for increased resolution will probably continue until column efficiencies are 
high enough to resolve every component or until resolution enhancement through 
multi-channel detectors and computer methods is routinely available. 

A number of recent driving forces have created a situation where certain aspects 
of numerical resolution enhancement need to be re-examined, especially with regard to 
the single-channel detector most commonly used in chromatographic systems. These 
driving forces include (1) the realization through chromatographic theory [l-13] that 
for samples of complex origin the resolving power needed for baseline separations has 
been previously underestimated, (2) the need for higher resolving power in applica- 
tions where components of minor concentration may play a major role in determining 
some property of the sample, (3) the recent production of numerical algorithms which 
are capable of high-resolution deconvolution and are now, owing to the increased 
computational performance of laboratory computers, feasible for use in laboratory 
applications and (4) the renewed interest in the flame ionization detector for HPLC, an 
inherently single-channel detector. Not only does high resolution help the analyst in 
the proper assessment of peak purity, important when fractions are collected for 
chemical analysis or when a “hyphenated” method of analysis is used; maximum 
resolution is of the utmost importance when automated method development is used. 

This paper addresses the question of the extent to which in theory numerical 
deconvolution can offer quantitative resolution enhancement for complex chromato- 
grams. Towards this goal, one of the best numerical methods of deconvolution, namely 
the constrained iterative relaxation method (CIRM), is used here to examine the limit 
of resolution enhancement. In addition, some aspects of deconvolution implementa- 
tion are*discussed. 

THEORY 

Potential benefits of &convolution 
The broadening ofchromatographic peaks, as is well known and as demonstrated 

in Fig. 1, causes the recognizable loss of individual components through the fusing 
together of closely spaced peaks. In Fig. 1, the retention time and amplitude sequence 
is constant between synthetic chromatograms. Only o, the standard deviation of the 
Gaussian peak shapes, is varied between the chromatograms. Unless shoulders or 
inflection points are found in the peak shape, it is often impossible for the analyst with 
a single-channel detector to determine if the peak is pure or composed of two or more 
components. The mathematical description of this loss of identity of pure peaks was 
recently described [l-13] for complex chromatograms possessing random retention 
times (additional assumptions of this approach are contained in the references). In this 
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Fig. 1. Synthetic chromatograms of 80 Gaussian peaks generated with identical Poisson-distributed 
retention times, uniformly-distributed random peak heights (between 0.05 and l), constant u and no noise. 
Bottom, (I = 1 s; middle, (T = 3 s; top, (r = 6 s. Retention times are indicated by the bars below the bottom 
chromatogram. 

theory the number of recognizable peaks, p, is related to the number of true 
components, m, via 

p=mexp -t 
( 1 

where n, is the peak capacity [14], which is defined as the maximum number of 
component peaks which can be uniformly packed into a chromatographic elution 
profile at a stated resolution. The peak capacity, n,, for situations such as gradient 
elution chromatography and programmed-temperature gas chromatography, where 
the peak variance, a2, is considered to be constant throughout the chromatographic 
elution profile, is given by [2,14] 

t man - to 
nc = 40Rt, (2) 

where tmax and lo denote the time range of the elution profile and RI, is the stated 
critical resolution, which has been estimated for this statistical model to be 0.5 [3,11]. 
Other studies have suggested alternative values for the critical resolution, e.g., 0.8 [9] 
and 0.71 [lo]. For isocratic LC or constant-temperature GC, where it is assumed that 
the peak variance is not constant but rather increases with time [14], 

where IV,, is the average number of theoretical plates. 
Eqns. l-3 allow the extent of deconvolution to be related to the number of 

observable peaks by the realization that deconvohttion increases the peak capacity by 
synthetically lowering Rs.. An expression is now obtained whereby the number of 
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peaks visible after deconvolution of the chromatogram, &, is ratioed to the number of 
peaks visible in the native chromatogram, p. From eqn. 1: 

pd= 
P 

(4) 

where Rf is the critical resolution of the deconvolution technique and n: is the peak 
capacity with unit resolution, i.e., n’, = neR,. Our use of the term resolution here is in 
keeping with the standard definition of resolution, R, = At/4a, where At is the 
difference in retention time, t,, between two peaks whose Gaussian standard deviations 
are both equal to cr. Rearranging eqn. 4 yields 

$=exp[E.(l --$)I (5) 

where n, is the peak capacity prior to deconvolution. Eqn. 5 gives the enhancement 
factor in the number of peaks that are ideally obtained by deconvolving the 
chromatogram as viewed by the ratio pd/p. As can be seen from eqn. 5, this 
enhancement becomes greater as the ratio m/n, increases. This ratio, m/n,, also known 
as the saturation factor, a, is a measure of how crowded a chromatogram is; the 
efficacy of deconvolution is thus seen to increase for more crowded chromatograms. 
An example of the value of deconvolution is suggested by considering a chromatogram 
with u = 1.00 and Rt = 0.35. We choose RI, here to be equal to 0.5 on a purely 
empirical basis. Under these conditions, ca. 1.35 times more peaks, or an increase of 
35% in the number of observable peaks, will be obtained. This suggests that a distinct 
beneficial gain could be obtained by considering deconvolution in the analysis of 
chromatograms with crowded peaks. Evaluation of eqn. 5 with a variety of c1 values is 
shown in Fig. 2. As can be seen, medium a chromatograms are predicted to benefit 
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The ratiop/p, as a function of q at various saturation values, LX, from eqn. 5. The critical resolution, 
R 3, IS taken to be 0.5. The shaded bar is explained under Results and Discussion. 
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from deconvolution, although to a lesser extent than large a chromatograms. For 
relatively uncrowded chromatograms (small a), where the number of components is 
low or the peak capacity is high, deconvolution is known to allow better peak 
quantification by defusing overlapped peaks; this role of chromatographic deconvolu- 
tion has been reported many times (e.g., [15-201). In addition, deconvolution has long 
been used in size-exclusion chromatography (SEC) where the inherently low resolution 
of the technique is commonly augmented by resolution enhancement [21]. In this 
paper, our aim is to examine super-resolution, a term commonly used in signal 
processing to denote the deconvolution or estimation of signals below the physically 
imposed broadening limit. For chromatography, the definition is broad but has 
recently been clarified to include the resolution of peaks separated by less than 20 in 
time or alternatively with R, less than 0.5 [22]. 

Problem formulation 
Consider a series of Gaussian peaks composing a chromatogram of m com- 

ponents eluting along the time axis t so that 

(6) 

where F(t) is the observed detector response at time t and Bj is the detector response 
factor of each component j with retention time t> and variance c$. The variance is 
expressed here in units of (time)’ and the detector response factor is normalized so that 

7 F(t)dt = Bj for th e e ution 1 of the purejth component. It is assumed here that the 

detector response, F(t), is the linear combination of amplitudes from each component, 
which is an excellent assumption for detectors such as the conventional UV detector 
used in HPLC. The peak variance, CJ~, is the result of ideal intra- and extra-column 
broadening processes. Initially, the sample band is introduced into the column as 
a narrow plug which very nearly approaches a delta function, S(t), compared with the 
width of a zone at the detector. Using previously developed theory [23,24], elution can 
be modeled as a convolution process. For ideal one-component elution with Gaussian 
broadening, 

F(t) = 7 G(t - t’)b(t)dt’ 
-* 

(7) 

where G is the broadening operator, normalized so that eqn. 7 is independent of the 
measurement space, and t’ is an auxiliary variable. A shortened version of eqn. 7 is 
often used [25,26]: 

F(t) = G(t) 0 s(t) (8) 

where the +R operator denotes convolution. Using the well known commutative 
property of convolution [25,26]: 
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7 G(t - t’)W(f)dt’ = 7 G(t’)W(t - t’)dt’ 
-00 -00 

(9) 

where Wis some function operated on by the broadening operator, eqn. 7 can now be 
expressed as 

F(t) = 7 G(t')cS(t - t’)dt’ 
-a 

(10) 

Physically, under the most ideal circumstances, this representation allows G to 
be a pure band broadening operator and the delta function now represents the delay 
time invoked by retention of the solute. Hence t’ is identified as the retention time, t,. If 
a mathematical inversion process were known so that given F(t) and the functional 
form of G, t’ could be determined with exact accuracy, then chromatography could be 
performed where all peaks in a chromatogram, regardless of the degree of fusion, could 
be recognized and quantified. Owing to the ill-conditioned nature of the problem, this 
is not possible [22]. If, in principle, eqn. 10 could be exactly solved then Rt would be 
zero because this situation corresponds to a zero critical resolution and eqn. 5 would 
ideally give pd/p = exp(m/n,), the maximum amount of resolution enhancement. This 
is not currently possible, and implies, in the discrete equation analogue of eqn. 10, an 
infinite sampling rate because the d(t - t’) term would have to lie exactly at the 
retention time of the peak. The presence of noise also foils this scheme. Using 
approximations instead of exact solutions for eqn. 10 can yield useful information if 
the 6(t - t’) term is replaced with the function W(t - t’), which will now be defined as 
a function resembling a 6 function but with finite width. Utilizing approximate 
solutions of eqn. 10 to solve for W(t - t’), as will be shown in the Results section, can 
give very useful information. 

Numerical methodology 
Although a host of numerical methods have been utilized for chromatographic 

and spectroscopic deconvolution, including those based on Fourier transform [15,16], 
least-squares solution [20], Kalman filters [271, singular value decomposition [28,29], 
maximum entropy methods [29], constrained iterative relaxation methods [19,3&34] 
and mixtures of these methods [29], a common theme that has emerged is that each 
method has its own advantages and disadvantages. For instance, Fourier transform 
methods, although fast and simple to implement, offer for most studies only a small 
improvement in resolution. Alternatively, the maximum entropy method (MEM) and 
the constrained iterative relaxation method (CIRM) offer the possibility of high 
deconvolution power while maintaining a reasonable baseline and peak integrity at the 
expense of increased computer time and increased implementation complexity. For the 
CIRM, high-resolution deconvolution is accomplished because the constraints of 
positivity and maximum value allow frequency extrapolation to occur [34], i.e., the 
power spectral density function present in the native signal can be moved into a higher 
frequency domain without spurious peak generation or distortion under the best 
conditions. The degree to which frequency extrapolation can take place ultimately 
limits the minimum value that o& the variance of the deconvolved peak, can obtain 
under reasonable fidelity. Fourier transform methods do not inherently allow 
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frequency extrapolation to occur unless constraints, such as non-negativity of 
solution, are combined with the .method [l&35]. 

We now focus on the CIRM because it will be used in this paper for deconvolving 
synthetic chromatograms. This method is performed on a chromatogram by applying 
the discrete point formula: 

FVk+l)(ti) = W”(ti) + r{ W”(ti)} {F(ti) - [G t Wk)]lt,) (11) 

where the superscript denotes the iteration number, the subscript denotes the position 
in each vector corresponding to a unique time value and the term r{ IVk)(ti)} is the 
relaxation function [30]. Prior to applying this algorithm, F(ti) is scaled to between 
0 and 1 and the initial values of II’ are set equal to F(Zi). The functional form of the 
relaxation function used here is 

I{ w’l’(ti)} = rOWk)(ti) [l - IVk’(ti)] (12) 

where r. is a constant, usually equal to 2 [30]. It is easy to see how this algorithm works. 
The difference vector formed by F(ti) - [G ++ I@k)]],, is used to iteratively form each 
new estimate of wCk+ “(ti), hence when the difference vector is small, as convergence is 
reached, W(kfl)(ti) x wk’(ti). Furthermore, the relaxation function maintains the 
positivity and finite constraints on I# k+l) Further information on this method is . 
described by Jansson [30]. 

It is well known that the convolution operation can be implemented with fast 
Fourier transform (FFT) techniques [26]. A criticism of all numerically intensive 
algorithms based on convolution is that unless FFT methods are utilized for 
convolution, long execution times will result, which would prohibit the use of 
convolution on laboratory computers. This is because the computational complexity 
of discrete convolution, which is of the order M2 floating-point operations (where Mis 
the number of points in the chromatogram), grows fast with increasing IV, as 
compared with the computational complexity of the FFT, which is of the order 
MlogM. For the utmost flexibility, however, FFT methods cannot convolve IV(t) with 
a broadening function that varies with time, because the FFT is a time-invariant 
operator [26]. 

For the case where time-varying broadening occurs across the chromatogram, 
for instance in isocratic LC or isothermal GC, the G term in eqn. 11 is actually 
composed of an M by M matrix [25] with the row number i corresponding to a unique 
time t in the fractogram and the column numberj corresponding to a unique retention 
of a peak (the t’ function of a peak). Each matrix entry therefore represents the 
broadening amplitude which occurs at time ti when the retention time is tp Hence the 
convolution of G with Wis simply a matrix multiplication [25] of the matrix G, of size 
M by h4, with the vector W, of length M. Because these broadening response sequences 
contained in the matrix G are mostly zero, over the full duration of the response, there 
is no need to store these zeroes. In practice, an index table for the start of each column’s 
non-sparse broadening function is utilized and the dense part of G is compressed into 
a banded vector. A special multiplication algorithm then forms the G t W convolu- 
tion. The speed and storage savings with this scheme allow relatively fast operation 
with minimum memory requirements. For example, a 20-min chromatogram sampled 
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at two points per second with a constant Gaussian response of cr = 6 s would normally 
require 5.76. lo6 entries in memory for the G matrix. If only f4a of the Gaussian 
broadening curve is stored in memory, then the compressed G storage requires only 
230 400 entries, a saving of a factor of 25 as compared with the full storage scheme. The 
speed increase with G compressed is also a factor of 25 faster than convolution with the 
full G matrix of size M by M. This makes the method practical to use for 
chromatography with fast workstations exceeding lo6 floating point operations per 
second. 

Implementation 
The computer programs used here are written in FORTRAN-77 and run on 

a variety of UNIX and VMS operating system computers. Digital filtering is 
performed initially on F(ti) and on consecutive iterations to the convolution pair in 
eqn. 11 with a Kaiser filter [36] set to roll off at between 0.35 and 0.5 of the Nyquist 
sampling frequency. This filter has smooth roll-off characteristics and avoids the 
oscillatory behavior that is known to occur with the Savitsky-Golay filters in the 
frequency domain [37]. If filtering is not applied on every iteration, peak shapes 
become distorted with rectangular character as cd becomes small; because the filtering 
tends to round the rectangular edges of peaks through high-frequency attenuation, this 
may be only a cosmetic situation. The convergence rate appears to be little affected by 
the choice of cut-off frequency once filtering is performed on the original signal 
because the band-limiting criterion needed for convergence [34] is established. 
However, stability and the minimum cd obtainable from this method are no doubt 
balanced by the proper choice of the roll-off frequency and the sharpness of the filter 
roll off. In this regard, the digital filter used in the CIRM has to be properly chosen; in 
this study we chose filter conditions where stability was the primary concern. 

Typically, 80 iterations of the CIRM are used for deconvolution; however, in 
some instances 160 iterations are used because of slow convergence. The root mean 
square (r.m.s.) error, computed from the difference vector, is monitored at each 
iteration and a smooth exponential-like decrease in the r.m.s. error is noted to occur as 
a function of iteration number. Typically, the discrete point density is maintained to be 
ca. 36 points over the peak (extending +40 from the peak mean). This oversampling 
[ 15,161 promotes high accuracy in the convolution operation; preliminary experiments 
demonstrate reasonable peak fidelity down to 20 points over the native peak when 
a/ad % 5. 

RESULTS AND DISCUSSION 

Maximum resolution deconvolution 
To probe the extent of deconvolution that is possible with the CIRM, synthetic 

chromatograms composed of two peaks are generated with specific peak spacings and 
peak-height ratios and subsequently deconvolved. In the results given here only 
noiseless Gaussian peaks are considered; the effects of skewed peaks and noise upon 
deconvolution will be examined in another paper. These results are oriented towards 
revealing peaks that are fused in the native chromatogram, hence accuracy in peak 
areas is not measured here. 

The result of these experiments is shown in Fig. 3, where Rf is given as a function 
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Fig. 3. Limits of deconvolution on two-component Gaussian peaks as embodied in the deconvolved peak 
critical resolution, @‘, as a function of the peak-height ratio, h,. The bars and spline fits are explainedin the 
text. 

of the peak-height ratio, h,. The region at the top of the bars is where the 
two-component peaks are easily deconvolved in 80 iterations and the peaks are 
resolved to within 20% of the baseline, as measured from the smallest peak height. The 
region at the bottom of the bars represents the threshold of deconvolution where peaks 
are no longer able to be separated numerically, with respect to the visual presence of 
two peaks. Between the bars two peaks are discernible but become increasingly 
difficult to differentiate as two peaks as the distance between the peaks is decreased. 
Most deconvolution operations in the region between the two bars requires 160 
iterations for peak resolution and convergence to an r.m.s. error of ~2. 10-j. 

The three broken lines shown in Fig. 3 are calculated from spline fits [38] of the 
top, bottom and mean of these limit bars. The function R?&) is extrapolated at both 
low and high h, to 0.5. For a doublet of equal peak height it becomes impossible 
normally to distinguish two discrete peaks below R, = 0.5 [39]; however, the CIRM 
cannot deconvolve doublet peaks of equal height at this resolution; this will be 
discussed below. At low h,, the method appears to approach asymptotically the 
resolvability limit of R:(O) = 0.5, although this limit is questionable because the 
peak-height ratio of zero has no meaning and the function Rf(h,) is singular at h, = 0. 
The curve shapes outlined by the spline interpolation show that the CIRM is, on 
average, more effective at small than large h,. The non-symmetrical nature of Fig. 3 is 
partly explained by the shape of the function describing the resolution of native peaks 
as a function of the height ratio, which will be discussed below. In addition, the 
non-symmetrical response may have its origin partly in the non-linear operation of the 
deconvolution method. 

The spline coefficients obtained from fitting are conveniently used to compute 

estimates of the average critical resolution of deconvolution, 3, over the range 
0 < h, d 1 by a weighted integration to find the function average value: 

%” = ; w(h,)R:(h,)dh, 
ot 

(13) 
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where the lower integration limit is set to be infinitesimally larger than zero because of 
the singularity mentioned previously. The term w(h,) is a weighting factor used to 
compensate for the non-uniform probability of height ratios sampled from exponential- 
ly distributed random variables; recent experiments have suggested that the peak 
area follows an exponential probability density function [7] for complex samples. 
Additional assumptions governing this exponential density under constant zone width 
and with random detector response factors have recently been discussed [5,7-lo]. 

For most chromatographic applications, the peak height ratio, h,, is usually 
defined for two peak heights, hr and hz, to be h, = min{hl,hz}/max{hl,hz} and this 
convention is used throughout this paper. The normalized weighting function for the 
ratio of exponential density random variables has been given by Feller [40] for the case 
where 0 c h, < co, i.e., the numerator and denominator of the ratio can take on all 
values except zero in the denominator. The normalized density function which we shall 
use for weighting is simply twice the function given by Feller (this has been verified by 
computer simulation): 

2 
w(hJ = (1 + h,)Z 

For peaks where the height ratio density function is uniform, the weighting function, 
w(h,), is unity. In both the exponential and uniform density cases the values of w(h,) 
given here apply only to random peak heights with no serial correlation. 

Evaluation of eqn. 13 for the curves displayed in Fig. 3 is given in Table I. The 
results in Table I and Fig. 3 indicate that the CIRM is capable of deconvolving, under 
zero noise and in the absence of tailing, to super-resolution (R, < 0.5) with the 
exception of peaks with h, = 1 and spaced less than At, = 20. For the case of multiple 
peaks (triplets, quadruplets, etc.) with adjacent h, = 1 and R, < 0.5, where the peak 
shape is essentially flat at the top of the peak aggregate, the CIRM appears to be 
incapable of resolving any of the aggregate. This probably results because the 
relaxation function given in eqn. 12 is zero when ?Vk’(ti) = 1. For this extreme case, 
forcing the relaxation function to take on non-zero values where FV”‘(ti) = 1 does not 
help because the iterative process guides the peak top to the region where the relaxation 
function assumes a zero value. There appears to be no easy modification to the CIRM 
that will maintain the top constraint and prevent this condition from occurring, short 
of adding noise to prevent the flat peak top condition. 

Statistical chromatogram deconvolution 
In an attempt to evaluate the CIRM numerical methodology on complex 

TABLE I 

EVALUATION OF 2 FOR CIRM FROM TWO-COMPONENT PEAKS 

Limit Uniform h, weighting Exponential h, weighting 

Low limit 0.348 0.339 
High limit 0.375 0.364 
Mean limit 0.362 0.352 
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chromatograms, synthetic chromatograms with 2&72 peaks at different c1 values are 
produced with subsequent deconvolution by the CIRM. The retention times are 
generated with a Poisson distribution, as has commonly been used in previous studies 
of statistical peak overlap [2-131, and with an exponential density of peak heights 
[5,7-lo]. Constant peak width is used in these calculations; however as stated 
previously, constant peak width is not a limitation of the CIRM or the convolution 
algorithm used here. Because of the statistical nature of these numerical experiments, it 
is necessary to perform a number of calculations at each stated saturation ratio, a; 
random number seeds are varied within these sets to produce estimates of the ratio 

(pd/p). To accommodate this requirement, five synthetic chromatograms are calcu- 
lated at each a. Peak counting is performed by visible inspection of both native and 
deconvolved synthetic chromatograms. The presence of peak maxima and shoulders is 
utilized in determining the number of peaks that are present in the chromatograms. 

Four cases of deconvolution at different c1 values are given in Figs. 4-7 using the 
CIRM. As can be seen, deconvolution with constant r~ and in the absence of noise and 
tailing renders many more peaks visible than in the fused peak native chromatograms 
shown. As shown by the retention time markers in Figs. 4-7, the CIRM cannot remove 
peak fusion when retention times are very close, as explained previously. Figs. 47, 
however, clearly demonstrate that deconvolution at the super-resolution level has the 
potential to be an effective aid in normal chromatographic analysis. 

The increase in the number of visible peaks after deconvolution, as measured by 

(Pd/p), the average ratio of visible deconvolved peaks to visible native peaks, is given in 
Table II as a function of the saturation ratio, CI. As can be seen, there is a gain in the 
number of detectable components, with the largest increase coming from large 
c1 experiments, as predicted from eqn. 5. Table II also indicates that there is a dispersion 

0.0 200.0 400.0 600.0 800.01000.0 a 
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ll1111!11,1 11, II ,I II,,,, I,,,, 

) 200.0 400.0 600.0 800.01C 
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Fig. 4. Statistical chromatogram before (top) and after (bottom) deconvolution. Conditions: a = 0.513 
(with Rf. = 0.8 in n,), m = 20, d = 6 s, 80 iterations, 15 peaks detected in the native chromatogram and 16 
peaks detected in the deconvolved chromatogram. Retention times are indicated by the bars below the 
bottom chromatogram. 

Fig. 5. 
Rts 

Statistical chromatogram before (top) and after (bottom) deconvolution. Conditions: a = 1 .OO (with 
= 0.8 in n.), m = 39,d = 6 s, 80 iterations, 21 peaks detected in the native chromatogram and 28 peaks 

detected in the deconvolved chromatogram. Retention times are indicated by the bars below the bottom 
chromatogram. 
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.6. Statistical chromatogram before (top) and after (bottom) doconvolution. Conditions: a = 1.49 (with 
R II = 0.8 in n,), m = 60, D = 6 s, 160 iterations, 22 peaks detected in the native chromatogram and 33 peaks 
detected in the deconvolved chromatogram. Retention times are indicated by the bars below the bottom 
chromatogram. 

Fi .7. Statistical chromatogram before (top) and after (bottom) deconvolution. Conditions: CL = 1.85 (with 
R B ~ = 0.8 in a,), m = 72, IJ = 6 s, 160 iterations, 25 peaks detected in the native chromatogram and 38 peaks 
detected in the deconvolved chromatogram. Retention times are indicated by the bars below the bottom 
chromatogram. 

in C&P), as expected, although it is not large as viewed from the relative standard 

deviation column. In an attempt to relate (P&) from eqn. 5 to k!$ from Table I, two 
different Rx, values are used in eqn. 5; these results are also given in Table II. It is 
especially important to note that R$ appears in eqn. 5 explicitly as part of the ratio of 
critical resolutions (Rt/Rfs ); however, Rs, also appears implicitly in the n, term in eqn. 
5 through eqns. 3 and 4. For reasons that are not clear, good consistency is obtained 
when Ri, , implicitly carried in n,, is chosen to be 0.8 (consistent with [9]) and Rs, in the 

TABLE II 

EVALUATION OF q FROM STATISTICAL CHROMATOGRAMS 

aa (P&J) _ %R.S.D.b 2 Deviation from Rtd 0 

in @d/p) Rf = 0.352 (W) 

0.513 1.13 7.23 0.383 8.91 0.539 
0.794 1.28 8.77 0.346 -1.73 0.598 
1.00 1.33 12.0 0.357 1.36 0.581 
1.18 1.44 10.2 0.345 -2.12 0.601 
1.49 1.51 8.44 0.361 2.61 0.574 
1.67 1.42 6.35 0.394 12.0 0.521 
1.85 1.48 9.78 0.394 11.9 0.522 

’ Calculated with R* = 0.8 in n, term. 
b R.S.D. = Relative itandard deviation. 
’ Assuming Rt = 0.5 in ratio term. 
d Assuming Rt = 0.352 in ratio term, Rf. applied equally to ratio and n, in a. 
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ratio Rf/RTs is equal to 0.5 (consistent with [3] and [l 11). As is noted from Table II, 
deviation of Rf from the value 0.352 is very low for the numerical experiments where 
c1 ES 1.49. In addition, Rf can be accepted as 0.352 and then the value of the critical 
resolution, Rf, , can be obtained through rearrangement of eqn. 5; these values are 
shown in the last column in Table II. It is noted that in this instance Rx, varies over the 
range 0.574 < Rts 6 0.601 when 0.794 < LY < 1.49. From the limited data given in 
Table II, there does not appear to be a recognizable trend which can be used in 
establishing one uniquely consistent value of R $, . However, the empirical use of 0.8 for 
Rlt, internal to n, and RI, of 0.5 in the ratio Rf/Rls serves to allow estimation of the 
ratio pa/p given Rt from the deconvolution methodology at a stated a. The value of 
0.352, from Table I, is independent of the statistical peak overlap model; hence this 

gives further credibility to the assignment of R,” = 0.352 for the CIRM and suggests an 
independent verification for the simple statistical model of peak overlap with Rt, = 0.5 
[2,3,9,1 I]. In Table II, the lowest a result appears to be in poor agreement with 

2 = 0.352; a possible explanation is that the number of peaks in this experiment is 
small; only 20 peaks are used at this a value and hence the statistical sampling is poor 
with only live experiments contributing to the mean value. When the statistical peak 
overlap model is used for the estimation of the true number of peaks in both synthetic 
and experimental chromatograms, it is observed [ 1 l] that the accuracy of estimation 
degrades at IX > 0.5. It is possible that the additional mathematics needed to describe 
higher saturation effects (e.g., the perturbation of the peak heights due to closely 
spaced surrounding clusters) will be less important in the application given here 
because the use of ratios, on which eqn. 5 is based, may tend to cancel or minimize this 
additional level of theory. 

The results in Table II illustrate the monotonic increase in pd/p from statistical 
chromatograms for a < 1.49. Above this value, however, there is no longer an increase 
in pd/p and it is at this point that the CIRM loses the ability to quantitatively remove 
peak fusion. A number of numerical experiments conducted with 2.0 < a < 100.0 have 
been used to observe that for a > 3.0 the ratiopJp is consistently approximated by the 
value 2.1 and deconvolution gives meaningless results in this range. For the range 
1.5 < CI < 3.0, pd/p asymptotically, but not monotonically, approaches 2.1 with 
broader deconvolved peaks than shown in Figs. 4-7. Therefore, in the absence of noise 
and tailing, the CIRM is observed to be effective, in the statistical sense, up to a values 
less than 1.5 and with the potential visible restoration of 1.5 times the number of peaks 
appearing in the native chromatogram. This operating range is summarized in Fig. 2 in 
the shaded area. 

It appears from the previous discussion that deconvolution can quantitatively 
restore lost peak information; however, as predicted from the statistical model of peak 
overlap [2-131, the general performance of separation is poor as analysis is carried out 
at higher a conditions. This is suggested by the data in Table III, where the quantities 
i/m andKIm are given from statistical chromatogram production and deconvolution. 
It is noted here that although deconvolution provides an enhancement in the ratio of 
the number of visible peaks after deconvolution to the true number of components, 
this ratio is still far below unity, the value that would be obtained if deconvolution 
could resolve all the peaks in the chromatogram. It is seen from Table III that there is 
a gain, however, in that deconvolution allows working at higher CI for a constant ratio 



64 M. R. SCHURE 

TABLE III 

EVALUATION OF j/m AND pd/m FROM STATISTICAL CHROMATOGRAMS 

- 
a” m dm him 

0.513 20 0.720 0.810 

0.794 31 0.587 0.742 

1.00 39 0.528 0.697 

1.18 46 0.461 0.661 

1.49 58 0.397 0.597 

1.67 65 0.372 0.529 

1.85 72 0.339 0.500 

a Calculated with R*. = 0.8 in n, term. 

of visible peaks to trne components, as compared with the native chromatogram. For 

example, with a = 0.5 13, $n = 0.720 for the native chromatogram. With deconvolu- 

tion, pd/ln = 0.697 for a = 1.00. These results suggest that CIRM deconvolution, 
although not capable of restoring all the peaks to a 1:l identity with the components, 
can be used to perform separations at higher column saturation values than would 
normally be used for high-resolution separations. 

Although our attention is focused on the extent of deconvolution of complex 

chromatograms in this paper, it is instructive to briefly examine additional RI, values 
for the statistical model which can be produced from the average critical resolution 
equation developed in this paper. As demonstrated by El Fallah and Martin [lo], 

synthetic chromatogram methodology may be used to estimate Ri, in the context of 

the statistical model of peak overlap. A different approach, as used here, is to find Rs, 
independent of the statistical model. 

1.60 

0.00 0.25 0.50 0.75 1.00 

Height Ratio 

Fig. 8. Limits of resolving two-component Gaussian peaks as a function of the peak-height ratio, h,. The top 
curve is the critical resolution value where valley discrimination between two peaks ceases. The bottom curve 
is the critical resolution value where inflection points can no longer be used to discriminate between two 
unique peaks. The middle curve is the average of the top and bottom curves. 
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In an attempt to find one uniquely consistent R$ value, critical resolutions for 
a two-component Gaussian doublet are calculated with eqns. 13 and 14 using Rs, (h,) 
from two limiting systems: (1) the values of RI, (h,) where the valleys between fused 
peaks vanish as resolution is decreased and (2) the values of Rls (hr) where inflection 
points can no longer distinguish between peaks as resolution is decreased. The former 
case has been called the “shoulder” resolution case and the latter the “detectability” 
resolution case [15]. Analytical solutions for these two situations were given by 
Westerberg [ 151. These two situations are graphically illustrated for Rf, as a function of 
h, in Fig. 8 and the evaluation of these two cases using eqns. 13 and 14 is given in Table 
IV. 

The Rx, values for exponential weighting from Table IV are consistent with 

bracketing the values of 0.574 < x < 0.601 when 0.794 < a < 1.49 from the last 
column in Table II. This suggests some form of consistency in accepting the value of 

Rf, of cu. 0.645 (the mean limit from Table IV) when eqn. 5 is formulated in a fully 
consistent usage of R$ . Unfortunately, this does not give insight into the proper value 
of Rt, . Of interest, however, is the correspondence of values in Table IV with values 
calculated within the statistical model framework [lo]. In this instance El Fallah and 

Martin [lo] obtained values of R s 7 = 0.536 for the low limit (compared with 0.558 in 

Table IV) and Rts = 0.796 for the high limit (compared with 0.725 in Table IV). 
Although direct comparison of these numbers is not strictly valid because of 

differences in the definition of the measurements and because the R$ values estimated 
in Table IV only include fused doublet peaks, the correspondence is nonetheless noted. 
There is, however, an interesting correspondence between El Fallah and Martin’s 
value of 0.71 + 0.01 for the average resolution, which is suggested for use [IO] in the 
statistical peak overlap model, and the average resolution calculated for the shoulder 
resolution case in Table IV of 0.725. Towards this end, further theoretical work will be 

needed to clarify an exactly rigorous value (if one exists) for Rf, As was stated 
previously, good consistency is realized between the results in Table II and from eqn. 
5 when Rls, implicitly carried in n,, is chosen to be 0.8 and Rx, in the ratio Rt/Rt, is 
chosen as 0.5, although at this point these values must be viewed as strictly empirical. 

Overview 
A comparison may be made between the results given here and investigations 

into overlapping peak resolution with derivative methods. The derivative methods 
[41], tend to be noise sensitive, as is the CIRM. However, CIRM tends to be more 

TABLE IV 
- 

EVALUATION OF Rt FOR TWO-COMPONENT PEAKS AT THE SHOULDER AND DETECT- 
ABILITY LIMITS 

Limit Uniform h, weighting Exponential h, weighting 

“Detectability” limit 0.529 0.558 
“Shoulder” limit 0.678 0.725 
Mean limit 0.605 0.645 



66 M. R. SCHURE 

effective in resolving severely overlapped peaks below R, = 0.5. This is, of course, at 
the expense of computer time, where the derivative methods typically require 1 s or less 
of computer time and the CIRM method takes about 5 min. In addition, derivative 
methods require little or no information about the column response function, which is 
a critical matter in the use of CIRM or any other method based on convolution. If the 
two methods could be combined, for instance if derivative information could be used 
to obtain a better starting estimate of W(ti), the deconvolution method may be made 
more time efficient, requiring less iteration to reach convergence. 

The response function embodied in the G matrix may be obtained experimentally 
by injection of individual solutes or by injection of a mixture when baseline separation 
is possible. In this way peak parameters can be estimated and used to form G. As stated 
previously, the CIRM methodology is capable of handling time-dependent broaden- 
ing in the composite peak shape throughout the chromatographic elution profile. In 
addition, it may be possible, depending on the nature of the solutes in the test and 
chromatographic mixtures, to substitute similar solutes in the test mixture as long as 
the elution range is covered. Careful experiments must be performed, in fact, to 
determine whether this is feasible and to what class of substances this can be applied. In 
essence, this may depend on whether specific interactions are controlling the 
separation and whether tailing is an extra- or an intra-column effect (e.g., slow 
desorption from the stationary phase). The reproducibility of the solvent or 
temperature program may also affect the accuracy of the peak response profile when 
gradient elution (LC) or temperature programming (GC) is used. 

One of the many aspects of CIRM deconvolution not discussed in this paper is 
the effect that inaccurate fl values (and other peak model parameters when 
non-Gaussian peaks are encountered) will have on the resultant deconvolved 
chromatogram. Synthetic chromatograms have been produced and analyzed where 
the broadness is purposely reduced in the G matrix; on deconvolution no spurious 
peaks are recognized but there are noticeably larger od values and poor overall 
performance. In instances where the broadening is purposely made larger than the 
(T value in the native singlet peak, occasional splitting into doublets has been observed, 
but this only happens after extensively long iteration. In this instance the rate of 
convergence is seen to be very slow and sometimes divergence occurs, as viewed from 
plot of r.m.s. error versus iteration number. The characterization of the broadening 
response of pure components in experimental chromatograms may be the accuracy- 
limiting step in the CIRM deconvolution process; this may also be true of any 
deconvolution method based on convolution. 

The results given here were obtained under the limiting condition of no noise. 
Noise is well known to be a critical factor in limiting the ability of deconvolution 
algorithms to work properly [42] and this factor must be determined experimentally 
because of the unique nature of the noise frequency distribution in real chromato- 
grams. Further, it has been suggested [30] that most deconvolution methods will work 
well on synthesized peaks but may fail when real waveforms are used. As shown in this 
paper, there is a finite resolving capability of the CIRM, and the purpose of this study 
was to find the region(s) of operation where resolution could not be restored. In 
addition, the Fourier method of deconvolution has been analyzed in the context of 
“perfect” experiments [16], where it was shown that delta function recovery was 
impossible and that only a small amount (compared with the CIRM) of resolution 
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recovery was possible. If the deconvolution methodology cannot enhance the 
resolution of noiseless signals, it is doubtful that high-fidelity resolution enhancement 
can be performed on a real noise-containing signal. There is no doubt, however, that 
the extent of deconvolution presented in this paper can be approached with very 
careful experiments, modem chromatographic equipment, and rigorous digital 
filtering when concentrations are adequate to permit working above the detection 
limit. In the context of filtering, it is known that CIRM deconvolution can be 
performed when the native detector signal is significantly broadened by overliltering 
[34]; owing to the frequency extrapolation that occurs with CIRM, additional filtering 
can be deconvolved from the signal by including the filter response in the broadening 
operator, G. 

The procedures for statistical chromatogram deconvolution presented in this 
paper may also be useful for evaluating other deconvolution methods in the context of 
chromatography. For instance, deconvolution by the maximum entropy method or 
the relatively new method of deconvolution by splines [43] may be evaluated by 

calculating 2, from Rt versus h, numerical experiments, and utilizing eqn. 5 to relate 

o! and 2 to pd/p. Finally, we note that the CIRM may have application in reducing 
analysis time whereby the chromatographic flow velocity may be increased at the 
expense of losing resolution, the resolution loss being compensated by numerical 
deconvolution. Chromatographic experiments are in progress to determine the extent 
to which this is feasible. 

SYMBOLS 

Bj 

F(t) 

G(t), W,t’) 

4 

hl,hz 

j 
m 
M 
n, 

I 
n, 
N 
NW 

!f 
P 

& 
Pd 
r 

iif 
Rd 
Ri s 
RfS 
t,t, 

Detector response of component j in a complex mixture 
Time-based concentration response of detector 
Broadening operator 
Peak-height ratio 
Heights of peaks 1 and 2 
Summation index 
Number of true components present in a mixture 
Number of points in a digitized chromatogram 
Peak capacity 
Peak capacity at unit resolution 
Number of theoretical plates 
Average number of theoretical plates 
Number of visible peaks in native chromatogram 

Average number of visible peaks in native chromatograms 
Number of visible peaks after deconvolution 

Average number of visible peaks after deconvolution 
Relaxation function 
Relaxation constant 
Critical resolution of deconvolution 

Average critical resolution of deconvolution 
Critical resolution value for peak discrimitation 

Average critical resolution value for peak discrimination 
Time, retention time 
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t max 

to 
w(h) 
lVk’(ti) 
a 

s(t) 
GPj 

cd 

Time at the end of chromatographic separation 
Void time of a chromatogram 
Weighting factor for peak heights 
kth iterative estimate of the unbroadened peak function 
Saturation factor, a = m/n, 
Delta function 
Standard deviation of a Gaussian peak 
Standard deviation of a Gaussian peak after deconvolution 
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